Gartner, Inc. predicts that by 2025, 70% of organizations will shift their focus from big to small and wide data, providing more context for analytics and making artificial intelligence (AI) less data hungry.
“Disruptions such as the COVID-19 pandemic is causing historical data that reflects past conditions to quickly become obsolete, which is breaking many production AI and machine learning (ML) models,” said Jim Hare, distinguished research vice president at Gartner.
“In addition, decision making by humans and AI has become more complex and demanding, and overly reliant on data hungry deep learning approaches.”
D&A leaders need to turn to new analytics techniques knows as “small data” and “wide data”.
Small data is an approach that requires less data but still offers useful insights.
The approach includes certain time-series analysis techniques or few-shot learning, synthetic data, or self-supervised learning.
Wide data enables the analysis and synergy of a variety of small and large, unstructured, and structured data sources.
It applies X analytics, with X standing for finding links between data sources, as well as for a diversity of data formats.
These formats include tabular, text, image, video, audio, voice, temperature, or even smell and vibration.
“Both approaches facilitate more robust analytics and AI, reducing an organization’s dependency on big data and enabling a richer, more complete situational awareness or 360-degree view,” said Mr. Hare.
- The Automation-Human Balance Takes Shape in Security
- 3 Tactics to Accelerate a Digital Transformation
- Putting Production on Repeat with Machine Tool Automation
- AI in manufacturing: Optimizing costs and enabling the workforce
- RPA: Why you need to care about this totally unsexy technology
- Buildings IOT Implements Smart Building Management System for Thor Equities’ 800 Fulton Market Development in Chicago
- Artificial Intelligence (AI) in Energy